Search results for "Yellow fluorescent protein"
showing 10 items of 11 documents
Cutting Edge: An IL-17F-CreEYFP Reporter Mouse Allows Fate Mapping of Th17 Cells
2009
Abstract The need for reporter lines able to faithfully track Th17 cells in vivo has become an issue of exceptional importance. To address this, we generated a mouse strain in which Cre recombinase is expressed from the IL-17F promoter. Crossing the IL-17F-Cre allele to a conditional enhanced yellow fluorescent protein (EYFP) reporter mouse yielded the IL-17F-CreEYFP strain, in which IL-17F expression is twinned with EYFP in live IL-17F-expressing cells. Although we demonstrate that IL-17F expression is restricted to CD4+ T cells during experimental autoimmune encephalomyelitis, IL-17F-CreEYFP CD8 T cells robustly expressed IL-17F in response to TGF-β, IL-6, and IL-23. Fate mapping of IL-17…
Computational Modeling of Protein Dynamics in Eukaryotic Cells
2012
Proteins have important functions inside the cell, traveling diffusively or being actively transported to various cellular sites where their activity is needed. Protein motion in the cellular environment is therefore an important topic to understand. However, the cell provides a very complex environment for that motion, which poses problems especially for any modeling effort designed to interpret experimentally observed features. So as to gain a realistic picture of protein dynamics inside the cell, we have recently introduced advanced numerical methods for describing that dynamics [1]. The starting point is an accurate numerical duplicate of the cell determined by LSCM, which can be used a…
Polar Localization of a Tripartite Complex of the Two-Component System DcuS/DcuR and the Transporter DctA in Escherichia coli Depends on the Sensor K…
2014
The C4-dicarboxylate responsive sensor kinase DcuS of the DcuS/DcuR two-component system of E. coli is membrane-bound and reveals a polar localization. DcuS uses the C4-dicarboxylate transporter DctA as a co-regulator forming DctA/DcuS sensor units. Here it is shown by fluorescence microscopy with fusion proteins that DcuS has a dynamic and preferential polar localization, even at very low expression levels. Single assemblies of DcuS had high mobility in fast time lapse acquisitions, and fast recovery in FRAP experiments, excluding polar accumulation due to aggregation. DctA and DcuR fused to derivatives of the YFP protein are dispersed in the membrane or in the cytosol, respectively, when …
Efficient, non-toxic anion transport by synthetic carriers in cells and epithelia.
2016
Transmembrane anion transporters (anionophores) have potential for new modes of biological activity, including therapeutic applications. In particular they might replace the activity of defective anion channels in conditions such as cystic fibrosis. However, data on the biological effects of anionophores are scarce, and it remains uncertain whether such molecules are fundamentally toxic. Here, we report a biological study of an extensive series of powerful anion carriers. Fifteen anionophores were assayed in single cells by monitoring anion transport in real time through fluorescence emission from halide-sensitive yellow fluorescent protein. A bis-(p-nitrophenyl)ureidodecalin shows especial…
Evaluation of Fused Pyrrolothiazole Systems as Correctors of Mutant CFTR Protein.
2021
Cystic fibrosis (CF) is a genetic disease caused by mutations that impair the function of the CFTR chloride channel. The most frequent mutation, F508del, causes misfolding and premature degradation of CFTR protein. This defect can be overcome with pharmacological agents named “correctors”. So far, at least three different classes of correctors have been identified based on the additive/synergistic effects that are obtained when compounds of different classes are combined together. The development of class 2 correctors has lagged behind that of compounds belonging to the other classes. It was shown that the efficacy of the prototypical class 2 corrector, the bithiazole corr-4a, could be impr…
Electrophysiological and morphological properties of Cajal–Retzius cells with different ontogenetic origins
2010
International audience; The different origins of Cajal-Retzius cells (CRc) as well as their diverse molecular profile suggest that this cell type may represent different neuronal subpopulations. In order to investigate whether CRc from different origins show distinct functional or morphological characteristics we used transgenic Dbx1(cre);ROSA26(YFP) mice in which two subpopulations of CRc, originating from the septum and ventral pallium (VP) at the pallial-subpallial border (PSB), were permanently labeled by yellow fluorescent protein (YFP) expression. Electrophysiological properties of YFP(+) and YFP(-) CRc were investigated by whole-cell patch-clamp recordings, while a thorough somatoden…
Thioredoxin (Trxo1) interacts with proliferating cell nuclear antigen (PCNA) and its overexpression affects the growth of tobacco cell culture.
2017
Thioredoxins (Trxs), key components of cellular redox regulation, act by controlling the redox status of many target proteins, and have been shown to play an essential role in cell survival and growth. The presence of a Trx system in the nucleus has received little attention in plants, and the nuclear targets of plant Trxs have not been conclusively identified. Thus, very little is known about the function of Trxs in this cellular compartment. Previously, we studied the intracellular localization of PsTrxo1 and confirmed its presence in mitochondria and, interestingly, in the nucleus under standard growth conditions. In investigating the nuclear function of PsTrxo1 we identified proliferati…
NG2-expressing cells in the nervous system revealed by the NG2-EYFP-knockin mouse.
2008
The NG2 glycoprotein is a type I membrane protein expressed by immature cells in the developing and adult mouse. NG2+ cells of the embryonic and adult brain have been principally viewed as oligodendrocyte precursor cells but have additionally been considered a fourth glial class. They are likely to be a heterogeneous population. In order to facilitate studies on the function of NG2+ cells and to characterize these cells in situ, we generated an enhanced yellow fluorescent protein (EYFP) “knockin mouse.” EYFP-expressing cells in heterozygous knockin mice expressed the NG2 protein in all regions and at all ages studied. The EYFP+ cells did not express markers of mature glia, developing or mat…
Neuronal activity triggers uptake of hematopoietic extracellular vesicles in vivo
2019
Communication with the hematopoietic system is a vital component of regulating brain function in health and disease. Traditionally, the major routes considered for this neuroimmune communication are by individual molecules such as cytokines carried by blood, by neural transmission, or, in more severe pathologies, by the entry of peripheral immune cells into the brain. In addition, functional mRNA from peripheral blood can be directly transferred to neurons via extracellular vesicles (EVs), but the parameters that determine their uptake are unknown. Using varied animal models that stimulate neuronal activity by peripheral inflammation, optogenetics, and selective proteasome inhibition of dop…
Targeting Nonsense: Optimization of 1,2,4-Oxadiazole TRIDs to Rescue CFTR Expression and Functionality in Cystic Fibrosis Cell Model Systems
2020
Cystic fibrosis (CF) patients develop a severe form of the disease when the cystic fibrosis transmembrane conductance regulator (CFTR) gene is affected by nonsense mutations. Nonsense mutations are responsible for the presence of a premature termination codon (PTC) in the mRNA, creating a lack of functional protein. In this context, translational readthrough-inducing drugs (TRIDs) represent a promising approach to correct the basic defect caused by PTCs. By using computational optimization and biological screening, we identified three new small molecules showing high readthrough activity. The activity of these compounds has been verified by evaluating CFTR expression and functionality after…